General Certificate of Education (A-level) January 2011

Mathematics
MM1B

(Specification 6360)

Mechanics 1B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM1B

Q	Solution	Marks	Total	Comments
1	$\begin{aligned} & 5 \times 6=(m+5) \times 2.4 \\ & 30=2.4 m+12 \\ & m=\frac{30-12}{2.4}=7.5 \end{aligned}$	M1A1 A1	3	M1: Equation for conservation of momentum with correct number of terms. A1: Correct equation. A1: Correct mass CAO Consistent use of weight instead of mass penalise final A1 mark.
	Total		3	
2(a)	$\begin{aligned} s & =\frac{1}{2} \times 10 \times 4+10 \times 4+\frac{1}{2} \times(4+7) \times 10+\frac{1}{2} \times 7 \times 10 \\ & (=20+40+55+35) \\ & =150 \mathrm{~m} \end{aligned}$ OR $\begin{aligned} s & =\frac{1}{2} \times(10+20) \times 4+\frac{1}{2} \times(4+7) \times 10+\frac{1}{2} \times 7 \times 10 \\ (& =60+55+35) \\ & =150 \mathrm{~m} \end{aligned}$ OR $\begin{aligned} s & =\frac{1}{2} \times 10 \times 4+10 \times 4+10 \times 4+\frac{1}{2} \times 10 \times 3+\frac{1}{2} \times 7 \times 10 \\ & (=20+40+40+15+35) \\ & =150 \mathrm{~m} \end{aligned}$	M1M1A1 A1 (M1M1A1) (A1) (M1M1A1) (A1)	4	M1: Any one term correct. M1: A second term correct. A1: Correct expression for total distance. A1: Total distance correct.
(b)	$\text { Average Speed }=\frac{150}{40}=3.75 \mathrm{~ms}^{-1}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	2	M1: Their total distance divided by 40 . A1F: Correct average speed based on their distance from part (a). Must be correct to three or more significant figures.
(c)	$a=\frac{4}{10}=0.4 \mathrm{~ms}^{-2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	M1: Any division involving the numbers 10 and 4. A1: Correct acceleration. CAO Note on use of constant acceleration equations: award M1 for correct equation with correct values and A1 for correct final answer.
(d)	$F=200000 \times 0.4=80000 \mathrm{~N}$	M1A1F	2	M1: Multiplication of , 2×10^{n}, for any integer n, by candidate's acceleration from part (c). A1F: Correct force based on their answer to part (c) multiplied by 200000. Note: use of $a=2.5$ gives 500000 N Accept 80 kN
	Total		10	

MM1B (cont)

MM1B (cont)

MM1B (cont)

MM1B (cont)

MM1B (cont)

MM1B (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} & 12 \sin 30^{\circ} t-4.9 t^{2}=-0.5 \\ & 4.9 t^{2}-12 \sin 30^{\circ} t-0.5=0 \\ & t=1.30281 \ldots o r-0.078323 \ldots \\ & t=1.30 \text { seconds (to 3sf) AG } \end{aligned}$	M1A1A1 dM1 A1	5	M1: Three term equation for vertical motion, with $\pm g, \pm 0.5$ (or ± 1 and $\pm 1.5)$ and $12 \sin 30^{\circ} t$ or $12 \cos 30^{\circ} t$. A1: Correct terms. (one must be equivalent to ± 0.5) A1: Correct signs. dM 1 : Solving the quadratic to find t. Must see use of quadratic equation formula or can be implied by seeing 1.303 or 1.302 or similar. A1: Correct time from correct working. Must see more than 3 significant figures in candidate's working before the final answer or two correct solutions to the quadratic (eg 1.3 and -0.08).
	OR time up $=0.6122$ time down $=0.6122+0.0783=0.6905$ total time $=0.6122+0.6905=1.30 \quad$ (to 3sf)	$\begin{gathered} \text { (M1A1 } \\ \text { dM1A1A1) } \end{gathered}$		M1:Adding time up to time down having used a quadratic. A1: 0.6122 dM1: Finding time down with a quadratic A1: 0.6905 A1: Correct answer Accept 1.3
	$\begin{aligned} & \text { OR } \\ & -6.767=12 \sin 30^{\circ}-g t \\ & t=\frac{12 \sin 30^{\circ}+6.767}{g}=1.30281=1.30 \text { (to } 3 \mathrm{sf} \text {) } \end{aligned}$	(M1A1A1) (dM1A1)		M1:Forms an equation to find t having found v first A1: Correct terms A1: Correct signs dM1: Solving for t A1: Correct time from correct working. Must see more than 3 significant figures in candidate's working before the final answer. Accept 1.3
(b)	$12 \cos 30^{\circ} \times 1.303=13.5 \mathrm{~m}$	M1A1	2	M1: Finding horizontal displacement using 1.30 (or better) and $12 \cos 30^{\circ}$. Do not allow $12 \sin 30^{\circ}$. A1: Correct distance. AWRT 13.5.

MM1B (cont)

Q	Solution	Marks	Total	Comments
7(c)	$\begin{aligned} v_{y} & =12 \sin 30^{\circ}-9.8 \times 1.3028(=-6.767) \\ v & =\sqrt{\left(12 \cos 30^{\circ}\right)^{2}+(-6.767)^{2}}=12.4 \mathrm{~ms}^{-1} \end{aligned}$	M1A1 dM1A1	4	M1: Finding vertical component of velocity or velocity squared at impact. Must include $12 \sin 30^{\circ}$ or $12 \cos 30$ and $\pm g$ A1: Correct expression for vertical component. May have 1.3 or 1.30 instead of 1.3028 . (Accept +6.767 or similar) dM1: Finding speed from two components. May use 6.74. A1: Correct speed. Allow 12.3 or AWRT 12.4. Note using $g=9.81$ still gives 12.4.
(d)	$\begin{aligned} \tan \theta & =\frac{6.767}{12 \cos 30^{\circ}} \\ \theta & =33.1^{\circ} \end{aligned}$ OR $\begin{aligned} \sin \theta & =\frac{6.767}{12.4} \\ \theta & =33.1^{\circ} \end{aligned}$ OR $\begin{aligned} \cos \theta & =\frac{10.4}{12.4} \\ \theta & =33.1^{\circ} \end{aligned}$	M1 A1F	2	M1: Trigonometric equation to find angle. Can only be those shown opposite or described below. For tan, fraction can be inverted. For sin, 10.4 can be used instead of 6.767. For cos, 6.767 can be used instead of 10.4. Can use their values from part (c) (eg 6.74 or 6.77). A1F: Correct angle. Accept AWRT 33°. Follow though vertical component or final speed from part (c).
(e)	The weight is the only force acting. OR No air resistance.	B1	1	B1: Appropriate assumption.
	Total		14	

MM1B (cont)

Q	Solution	Marks	Total	Comments
8(a)	or N			B1: $R, 500$ and $m g$ correct B1: Tension in roughly correct direction.
	500			If more than four forces shown, do not award more than one mark.
	$\downarrow m g$ or W or $2000 g$ or 19600 or 19620 or $9.8 m$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Note all forces must be shown as arrows and have labels.
				Note some candidates may draw the force diagram in the section with the question.
				Components can be ignored if shown in a different notation eg dashed arrows.
(b)	$\begin{aligned} 2000 \times 0.6 & =T \cos 12^{\circ}-500-2000 \times 9.8 \sin 5^{\circ} \\ & T-1200+500+19600 \sin 5^{\circ} \end{aligned}$	M1A1A1		M1: Resolving parallel to the slope to obtain a four term equation of
	$T=\frac{\cos 12^{\circ}}{}$	dM1		motion. The weight and tension terms must be resolved.
	$\left(=\frac{3408.25}{\cos 12^{\circ}}\right)$			A1: Correct terms. A1: Correct signs.
	$(=3484.4)$			dM 1 : Solving for T.
	$\begin{equation*} =3480(\text { to } 3 \mathrm{sf}) \tag{AG} \end{equation*}$	A1	5	A1: Correct tension. AWRT 3480. Allow AWRT 3490 from use of g $=9.81$.
	Total		7	
	TOTAL		75	

